Abstract

A scanning tunneling microscope (STM) combined with a pump-probe femtosecond terahertz (THz) laser can enable coherence measurements of single molecules. We report THz pump-probe measurements that demonstrate quantum sensing based on a hydrogen (H2) molecule in the cavity created with an STM tip near a surface. Atomic-scale spatial and femtosecond temporal resolutions were obtained from this quantum coherence. The H2 acts as a two-level system, with its coherent superposition exhibiting extreme sensitivity to the applied electric field and the underlying atomic composition of the copper nitride (Cu2N) monolayer islands grown on a Cu(100) surface. We acquired time-resolved images of THz rectification of H2 over Cu2N islands for variable pump-probe delay times to visualize the heterogeneity of the chemical environment at sub-angstrom scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call