Abstract
A nanoscopic understanding of spin-current dynamics is crucial for controlling the spin transport in materials. However, gaining access to spin-current dynamics at an atomic scale is challenging. Therefore, we developed spin-polarized scanning tunneling luminescence spectroscopy (SP STLS) to visualize the spin relaxation strength depending on spin injection positions. Atomically resolved SP STLS mapping of gallium arsenide demonstrated a stronger spin relaxation in gallium atomic rows. Hence, SP STLS paves the way for visualizing spin current with single-atom precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.