Abstract

The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic-scale study of metal-promoter interactions in silica-supported Rh, Rh-Mn, and Rh-Mn-Fe catalysts by aberration-corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh-Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh-Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.