Abstract

Advances in computer-based modeling and simulation methodologies and capabilities, coupled with the emergence and development of high-resolution experimental techniques, allow investigations of tribological phenomena with unprecedented atomic-scale spatial and temporal resolution. We focus here on molecular dynamics simulations of formation and properties of interfacial junctions and on nano-elastohydrodynamics in sheared lubricated junctions. Simulations predict that upon approach of a metal tip to a surface a jump-to-contact instability occurs and that subsequent nanoindetation leads to plastic deformation of the gold surface. Retraction of the tip from the surface results in formation of a connective junction, or wire, of nanoscale dimensions, whose elongation mechanism consists of a series of plastic stress-accumulation and stress-relief stages which are accompanied by structural order−disorder transformations. These transformations involve multiple-glide processes. The yield-stress of a gold nanowire...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.