Abstract
This study extensively investigates the passive film formation mechanisms on Ti-xNb alloys by using several electrochemical techniques, including electrochemical impedance spectroscopy (EIS) before and after potentiostatic polarization at the passive zone, and Mott-Schottky (MS) measurements in 9 g/l NaCl electrolyte at 37 °C, together with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis. Overall, the Ti40Nb presented lower corrosion resistance due to a thinner passive film as compared to commercial pure Ti (grade 2) and Ti12Nb. The passive film formed on Ti12Nb and Ti40Nb alloys at a steady-state condition (+0.5 VAg/AgCl for 60 min) is composed of amorphous phases of TiO, Ti2O3, TiO2, Nb2O5, and crystalline phases of TiO2 (anatase) and Nb2O5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.