Abstract

A study on the mechanical properties of one-dimensional layered titanate nanomaterials is crucial since they demonstrate important applications in various fields. Here, we conducted ex situ and in situ atomic-scale investigation on the bending properties of a kind of ceramic-layered titanate (Na2Ti2O4(OH)2) nanowire using transmission electron microscopy. The nanowires showed flexibility along the 100 direction and could obtain a maximum bending strain of nearly 37%. By analysing the defect behaviours, the unique bending properties of this ceramic material were found to correlate with a novel arrangement of dislocations, an active dislocation nucleation and movement along the axial direction resulting from the weak electrostatic interaction between the TiO6 layers and the low b/a ratio. These results provide a pioneering and key understanding on the bending behaviours of layered titanate nanowire families and potentially other one-dimensional nanomaterials with layered crystalline structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.