Abstract
Although aberration-corrected scanning transmission electron microscope (STEM) enables the atomic-scale visualization of ultrathin 2D materials such as graphene, imaging of electron-beam sensitive 2D materials with structural complexity is an intricate problem. We here report the first atomic-scale imaging of a free-standing monolayer clay mineral nanosheet via the annular dark field (ADF) STEM. The monolayer clay nanosheet was stably observed under optimal conditions, and we confirmed that the hexagonal contrast pattern with a pore of ∼4 Å corresponds to the atomic structure of clay mineral that consisted of adjacent Si, Al, Mg, and O atoms by comparison with simulations. The findings offer the usefulness of ADF-STEM techniques for the atomic scale imaging of clay minerals and various 2D materials having electron-beam sensitivity and structural complexity than few-atom-thick graphene analogues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.