Abstract

Water−gas shift chemistry provides a useful method for producing hydrogen from coal; however, fuel cell applications demand that this hydrogen be free of impurities. Due to their unique properties, Pd/Cu alloys represent an import class of materials used for H purification membranes and also serve as the active metals in many heterogeneous catalysts. Little is known about how Pd and Cu interact electronically in these mixed systems and there is debate in the literature over the direction of charge transfer between the two species. This study used the differential conductance (dI/dV) spectroscopy capabilities of a low-temperature scanning tunneling microscope (STM) to investigate the atomic-scale electronic structure of Pd/Cu surface alloys. dI/dV spectroscopy gives a direct measure of the local density of states of surface sites with subnanometer precision. Results from this work demonstrate that individual, isolated Pd atoms in a Cu lattice are almost electronically identical to their host atoms. Over an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.