Abstract
Combined atomic and friction force microscopy reveals a significant modulation of atomic-scale friction related to the small periodic rumpling induced at the interface between heteroepitaxial films of KBr on NaCl(100). Transitions from dissipative atomic-scale stick slip to smooth sliding with ultralow friction are observed within the $6\ifmmode\times\else\texttimes\fi{}6$ surface unit cell of the underlying superstructure. Scanning across atomic-scale defects confirms the high-resolution capabilities of friction force microscopy close to the ultralow friction state. Strong variations of the tip-surface interaction energy across the superstructure demonstrate that subsurface chemical and size inhomogeneities dramatically change the frictional properties of the surface probed by the microscope tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.