Abstract

Using first-principles approaches, we have investigated the thermoelectric properties and energy conversion efficiency of the paired metal–Br–Al junction. Owing to the narrow states in the vicinity of the chemical potential, the nanojunction has large Seebeck coefficients such that it can be considered an efficient thermoelectric power generator. We also consider the nanojunction in a three-terminal geometry, where the current, voltage, power, and efficiency can be efficiently modulated by the gate voltages. Such current–voltage characteristics could be useful in the design of nanoscale electronic devices such as a transistor or switch. Notably, the nanojunction as a transistor with a fixed finite temperature difference between electrodes can power itself using the Seebeck effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.