Abstract
In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. Here, we reveal a temperature-dependent self-repair mechanism that allows near-damage-free atomic-scale sculpting of graphene using a focused electron beam. We demonstrate that by sculpting at temperatures above 600 °C, an intrinsic self-repair mechanism keeps the graphene in a single-crystalline state during cutting, even though the electron beam induces considerable damage. Self-repair is mediated by mobile carbon ad-atoms that constantly repair the defects caused by the electron beam. Our technique allows reproducible fabrication and simultaneous imaging of single-crystalline free-standing nanoribbons, nanotubes, nanopores, and single carbon chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.