Abstract

We demonstrate on the basis of ab initio simulations how passivated semiconductor surfaces can be exploited to study bulklike interaction properties and wave functions of magnetic impurities on the atomic scale with conventional and spin-polarized scanning tunneling microscopy. By applying our approach to the case of $3d$ transition metal impurities close to the H/Si$(111)$ surface, we show exemplarily that their wave functions in Si are less extended than for Mn in GaAs, thus obstructing ferromagnetism in Si. Finally, we discuss possible applications of this method to other dilute magnetic semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.