Abstract

Using a novel alternating target laser ablation deposition technique, Mn cations were placed in specific interstitial sites of BaFe12O19 thin films as opposed to being distributed throughout the unit cell as in conventional bulk materials. The distribution of Mn cations has been confirmed experimentally and predicted theoretically. As a result of site selection, the saturation magnetization increased 12%-22%, and the Néel temperature increased by 40-60 K compared to bulk materials. This technique implies a new methodology to design and process a new generation of ferrite, oxide, and alloy materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call