Abstract

Moiré superlattices provide in-plane quantum restriction for light-matter interactions in twisted bilayer graphene (tBLG), leading to the exotic photon-Moiré physics and potential applications for light manipulation. Recently, our experiment identified a highly confined slow surface plasmons polaritons (SPPs) mode in tBLG. Here, we demonstrate that the propagation of the slow SPPs mode in tBLG is spatially tailored and steered at deep subwavelengths. Analysis by the perturbation theory indicates that the coupling between the slow SPPs mode and the Moiré system is greatly strengthened, which regulates the wavefront at the atomic scale and makes tBLG serve as a universal optical metamaterial. Consequently, the negative refraction is achieved at the interface of monolayer graphene and tBLG, by which a metalens with a controllable focal length and an extremely high resolution up to 1/150 of wavelength is devised. Our work paves the way for constructing optical metamaterial at the atomic scale and develops future photon-Moiré interaction systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call