Abstract

We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM features an ultra-rigid and compact scan head in which the coarse approach is driven by our newly designed TunaDrive piezoelectric motor. A three-level spring hanging system is used for vibration isolation. Room-temperature raw-data images of graphite with quality atomic resolution were acquired in the presence of very strong magnetic fields, with a field strength up to 27 T, in a 32-mm-diameter bore WM with a maximum field strength of 27.5 T at a power rating of 10 MW, calibrated by nuclear magnetic resonance (NMR). This record field strength of 27 T exceeds the maximal field strength achieved by the conventional superconducting magnets. Besides, our WM-STM has paved the way to STM imaging using a 45 T, 32-mm-diameter bore hybrid magnet, which is the world’s flagship magnet, producing the strongest steady magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.