Abstract

Atomic resolution neutron holography constitutes a novel technique to obtain structural information. It is based on the recording of the interference of neutron waves coherently scattered by atoms located on a crystal lattice with a suitable reference wave. This process can be accomplished by two complementary schemes. In the frame of the first approach, a point-like source of spherical neutron waves is required inside a single crystal. Such a source can be realized owing to the extremely large value of the incoherent neutron scattering cross section of the proton. Hydrogen atoms imbedded in a sample which is placed in a monochromatic beam of slow neutrons will emit spherical neutron waves as a result of an incoherent scattering process. The interference between the undisturbed wave field and that part of the wave which is scattered by neighboring atoms can be recorded, thereby producing a hologram. The second approach utilizes a source of plane neutron waves outside the sample. The interference between the undisturbed and the scattered parts of the neutron wave field is recorded by point-like detectors, i.e. strongly neutron-absorbing nuclei, which are placed inside the crystal lattice that is to be imaged. The experimental feasibility of these two techniques is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call