Abstract

Certain cobalt oxides are known to exhibit ordered Co spin states, as determined from macroscopic techniques. Here we report real-space atomic-resolution imaging of Co spin-state ordering in nanopockets of La(0.5)Sr(0.5)CoO(3-δ) thin films. Unlike the bulk material, where no Co spin-state ordering is found, thin films present a strain-induced domain structure due to oxygen vacancy ordering, inside of which some nanometer sized domains show high-spin Co ions in the planes containing O vacancies and low-spin Co ions in the stoichiometric planes. First-principles calculations provide support for this interpretation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.