Abstract
Understanding the chemical states of individual surface atoms and their arrangements is essential for addressing several current issues such as catalysis, energy stroage/conversion, and environmental protection. Here, we exploit a profile imaging technique to understand the correlation between surface atomic structures and the oxygen evolution reaction (OER) in Mn3O4 nanoparticles. We image surface structures of Mn3O4 nanoparticles and observe surface reconstructions in the (110) and (101) planes. Mn3+ ions at the surface, which are commonly considered as the active sites in OER, disappear from the reconstructed planes, whereas Mn3+ ions are still exposed at the edges of nanoparticles. Our observations suggest that surface reconstructions can deactivate low-index surfaces of Mn oxides in OER. These structural and chemical observations are further validated by density functional theory calculations. This work shows why atomic-scale characterization of surface structures is crucial for a molecular-level understanding of a chemical reaction in oxide nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.