Abstract

The reaction of atomic radical F with propyne has been studied theoretically using ab initio quantum chemistry methods and transition state theory. The potential energy surface was calculated at the CCSD(T)/aug-cc-pVDZ (single-point) level using the UMP2/6-311++G(d,p) optimized structures. Two reaction mechanisms including the addition–isomerization–elimination reaction mechanism and the directed hydrogen abstraction reaction mechanism are considered. For the hydrogen abstraction reactions, i.e., the most probable evolution pathway in the title reaction, the HF formation occurs via direct abstraction mechanism dominantly and the H atom picked up by the atomic radical F should come mostly from the methyl group of normal propyne. On the other hand, for the addition–isomerization–elimination mechanism, the most feasible pathway should be the atomic radical F attacking on the C≡C triple bond in propyne (CH3C≡CH) to form a weakly-bound adduct A1 with no barrier, followed by F addition to the C≡C triple bond to form the low-lying intermediate isomer 5. Subsequently, isomer 5 directly dissociates to P3 H2CCCHF + H via transition state TS5/P3. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reaction proceed, we expect that the competitive power of reaction channels may vary with experimental conditions for the title reaction. The present work will provide useful information for understanding the processes of atomic radical F reaction with other unsaturated hydrocarbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call