Abstract

AbstractWith the advantages of controllable atomic composition, unique molecular‐like properties, and excellent biocompatibility, atomic precision Au cluster is an ideal candidate for developing materials with customized biological functions to meet the needs of precision medicine. To achieve the rational design of functional materials through structural regulation at the atomic level, it is important to clarify the relationship between the structure and properties of Au clusters. With the development of synthesis methodology, a variety of structural regulation methods of Au clusters have been developed, providing new opportunities for structure–activity relationship establishment and precision medicine application. This review introduces the synthesis and structure regulation methods of atomic precision Au clusters, and the effects of structural regulation on the physicochemical properties are further described. At the same time, the applications of Au clusters in precision medicine, including the detection of biomolecules, functional imaging, and disease therapy are discussed, as well as the recent studies around their biosafety. At last, it also briefly summarizes the current problems and development directions. The present work provides potential theoretical guidance for the rational design of Au clusters with customized biological functions and is of great significance for broadening their applications in the field of precision medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.