Abstract
Li- and Mn-rich oxides (LMR) have emerged as promising cathode materials for next-generation Li-ion batteries due to their cost effectiveness, impressive capacity, and high energy density. However, the poor electrochemical kinetics and structural instability in hostile interface environments have result in continuous voltage/capacity decay and undesirable rate performance, impeding the large-scale commercial application of LMR materials. In this study, we introduce an atomic pins-assisted integrated surface reconstruction (AISR) strategy to address the interfacial degradation and instability issues. Utilizing the bidirectional diffusion effect of the aluminum-containing intermediate layer during the heat treatment process, we employ aluminum atoms as bridging centers to in situ construct a composite interface structure. This approach capitalizes on the element diffusion reaction and anchoring effect to achieve multifunctional modification through the Al-based ionic conductor network constructing and near-surface Al doping for LMR material. Intriguingly multiple kinetic investigations and calculations reveal that the epitaxial ionic conductor layer suppresses interfacial side reactions, enhances ionic conductivity, and improves electronic conductivity by regulating cationic/anionic redox activity through Al surface doping.Impressively, the modified electrodes exhibited an increased reversible capacity at both 0.1C/5C rates (0.1C, 2 ∼ 4.8 V, from 264.2 mAh∙g−1 to 274 mAh∙g−1; 5C, 2 ∼ 4.6 V, from 145.5 mAh∙g−1 to 197.9 mAh∙g−1) and improved capacity retention after 250 cycles at 1C/5C rates (2 ∼ 4.6 V: 1C, from 69.46% to 81.92%; 5C from 57.73% to 81.35%). We systematically summarized the rate-dependent failure mechanism and the corresponding integrated interface reconstruction principle. These key findings offer valuable insights for the development of high-energy–density and long-life lithium-ion batteries in commercial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.