Abstract
The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry, both numerically and analytically. For typical Tokamak Fusion Test Reactor (TFTR) [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (IAEA, Vienna, 1987), Vol. 1, p. 51] and Texas Experimental Tokamak (TEXT) [Nucl. Technol. Fusion 1, 479 (1981)] edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, ηcrite, is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.