Abstract

Hydroxyl and oxygen greenline nightglow observations from the Wind Imaging Interferometer (WINDII) are used to examine the local time–latitude variation of atomic oxygen in the mesopause region. Individual hydroxyl and greenline emission profiles from over 5 years of data are converted to oxygen mixing ratio (or concentration) profiles and then binned into local times, latitudes, and seasons. The two derived oxygen profiles from each emission are then combined into a single profile that spans a significant portion of the mesopause region (80 to 115 km). A technique developed earlier that addresses the altitude variability of the emission profiles is used. This level of agreement indicates a high degree of consistency in the radiance observations and in the photochemistry used to convert the emission rates to oxygen profiles. We demonstrate that the atomic oxygen concentration or mixing ratio profiles are very sensitive to local nighttime, and we display the manner in which they vary. The local time variation is primarily due to the tidal dynamics in the atmosphere. Comparisons between our atomic oxygen data set, a simple tidal model, and the TIME‐GCM show good agreement; however, the local time tidal structure of atomic oxygen from MSISE‐90 shows a 180° phase inconsistency. The measured local time oxygen variations vary with season and latitude, and we show that these oscillations are stronger under equinox conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.