Abstract

Poly(p-phenylene benzobisoxazole) (PBO) fibers are ideal candidates for cables in tether application and reinforcements in advanced composites. Upon exposure to atomic oxygen (AO) in low earth orbit (LEO), PBO fibers are severely eroded. In this study, the AO erosion behaviors of PBO fibers and their composite were investigated in simulated AO environment, based on the evaluation of microstructure, surface chemistry, thermal stability and mechanical properties. Surface morphologies and crystalline structure confirmed that PBO fibers were significantly eroded after AO irradiation. X-ray photoelectron spectroscopy (XPS) showed that the relative content of CC decreases with the increase of AO irradiation time, suggesting a chain scission of PBO fibers. After 8 h AO exposure, the tensile strength of PBO fibers was decreased by 31.6%, and the onset decomposition temperature was reduced by 30.8 °C. Monofilament pull-out tests showed that the interfacial shear strength (IFSS) of PBO/epoxy composite was as low as 61.3% that of pristine composite due to the interface damage caused by AO penetration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.