Abstract

Basis sets developed for use with effective core potentials describe pseudo-orbitals rather than orbitals. The primitive Gaussian functions and the contraction coefficients in the basis set must therefore both describe the valence region effectively and allow the pseudo-orbital to be small in the core region. The latter is particularly difficult using 1s primitive functions, which have their maxima at the nucleus. Several methods of choosing contraction coefficients are tried, and it is found that natural orbitals give the best results. The number and optimization of primitive functions are done following Dunning's correlation-consistent procedure. Optimization of orbital exponents for larger atoms frequently results in coalescence of adjacent exponents; use of orbitals with higher principal quantum number is one alternative. Actinide atoms or ions provide the most difficult cases in that basis sets must be optimized for valence shells of different radial size simultaneously considering correlation energy and spin-orbit energy. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 516–520, 2000

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call