Abstract
Carbon coverage, oxidation and reduction of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 1.5 nm thickness on Mo have been characterized with ARPES and desorption spectroscopy upon exposure to thermal H and O radicals. We observe that only part of the carbon species is chemically eroded by atomic H exposure, yielding hydrocarbon desorption. Exposure to atomic O yields complete carbon erosion and CO 2 and H 2O desorption. A dramatic increase in metallic and non-metallic oxide is observed for especially Ni and Co surfaces, while for Au and Cu, the sub-surface Mo layer is much more oxidized. Although volatile oxides exist for some of the d-metals, there is no indication of d-metal erosion. Subsequent atomic H exposure reduces the clean oxides to a metallic state under desorption of H 2O. Due to its adequacy, we propose the atomic oxygen and subsequent atomic hydrogen sequence as a candidate for contamination removal in practical applications like photolithography at 13.5 nm radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Surface Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.