Abstract
Modal analysis is the process of estimating a system's modal parameters such as its natural frequencies and mode shapes. One application of modal analysis is in structural health monitoring (SHM), where a network of sensors may be used to collect vibration data from a physical structure such as a building or bridge. There is a growing interest in developing automated techniques for SHM based on data collected in a wireless sensor network. In order to conserve power and extend battery life, however, it is desirable to minimize the amount of data that must be collected and transmitted in such a sensor network. In this paper, we highlight the fact that modal analysis can be formulated as an atomic norm minimization (ANM) problem, which can be solved efficiently and in some cases recover perfectly a structure's mode shapes and frequencies. We survey a broad class of sampling and compression strategies that one might consider in a physical sensor network, and we provide bounds on the sample complexity of these compressive schemes in order to recover a structure's mode shapes and frequencies via ANM. A main contribution of our paper is to establish a bound on the sample complexity of modal analysis with random temporal compression, and in this scenario we prove that the samples per sensor can actually decrease as the number of sensors increases. We also extend an atomic norm denoising problem to the multiple measurement vector (MMV) setting in the case of uniform sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.