Abstract
We demonstrate high atomic mercury vapor pressure in a kagomé-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 6(3)P(2) - 6(3)D(3) transition, corresponding to an atomic mercury number density of 6 × 10(10) cm(-3). The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.