Abstract

Refractory high entropy superalloys (RHESs), known for their excellent high temperature performance, exhibit promising characteristics but are challenged by significant brittleness. Efforts to enhance plasticity through microstructure regulation have achieved only limited success, largely due to the unclear underlying fracture mechanisms of the superstructure. In this study, we systematically investigate the fracture mechanisms of the AlMo0.5NbTa0.5TiZr RHES from microscopic to electronic scales. Interestingly, both experimental and simulation results reveal that the ordered B2 phase demonstrates non-negligible plastic deformation capabilities during fracture, including deformation twinning and amorphization. Despite this, the fracture resistance of the B2 phase is lower compared to the A2/B2 interface and disordered A2 phase, even though the A2 phase shows less twinning and amorphization. Ab initio molecular dynamics simulations, combined with electronic behavior analysis, indicate that bonds involving Al and Zr in the B2 phase often exist in an anti-bonding state, making them more prone to breaking under load. This study provides deeper insights into the fracture mechanisms of the A2/B2 superstructure and its constituent phases at both atomic and electronic levels, offering a systematic approach to improving the fracture properties of such RHESs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.