Abstract

Internal friction (IF) describes the ability of materials to damp out mechanical oscillations. It is a crucial engineering parameter and also conveys unique microscopic information about structural defects, transport phenomena, and phase transformations in solids. While IF predominately results from lattice defects in crystalline materials, the origin of IF remains unclear in disordered materials, like metallic glasses. In this paper, we study the atomic rearrangements that govern IF in a model metallic glass, via numerical simulations of dynamical mechanical spectroscopy together with structural analysis. We identify cooperative and avalanchelike thermal-driven excitations as an underlying mechanism and demonstrate a linearlike relation between the concentrations of these excitations and the values of IF. Structurally, these excitations can be hindered, and thus suppress IF, by slow atoms that usually associate with full icosahedral symmetry. Our results also provide practical guides in tuning IF in metallic glasses from atomistic perspectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.