Abstract
AbstractMacromolecular chain scission under mechanical stress has been studied by infrared spectroscopy. The dependence of accumulation of chemical bond scissions on temperature T and uniaxial tensile stress σ has been investigated. The rate constant K for bond dissociation under mechanical stress has been found to obey the modified Arrhenius equation: K = K0 exp{ − (EA − ασ)/RA}. The quantitative connection between the rate constant for bond dissociation and mechanical lifetime τ has been established. Analysis of the experimental data indicates that the strength and mechanical lifetime of polymers is determined by the kinetics of mechanochemical scission of the main chains of polymer molecules.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science: Polymer Physics Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.