Abstract

We use density-functional-based tight binding theory, coupled to a Poisson solver to investigate the dielectric response in oxidized ultra-thin Si films with thickness in the range of 0.8 to 10.0 nm. Building on our recent work on the electronic structure of such Si films using the same formalism, we demonstrate that the electronic contribution to the permittivity of Si and of SiO 2 is modeled with good accuracy. The simulations of oxidized Si films agree well with available experimental data and show appreciable degradation of permittivity by nearly 18% at 0.8nm. Notable is however that simulations with hydrogenated Si substantially overestimate the degradation of permittivity. Beyond clarifying the quantitative trend of permittivity versus Si thickness, which is very relevant e.g. for fully-depleted Si-on-insulator MOSFETs, the present work is a cornerstone towards delivering an atomistic modelling approach that is free of material- or device-related phenomenological parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.