Abstract

The mature capsids of human immunodeficiency virus type 1 (HIV-1) and other retroviruses are fullerene shells, composed of the viral CA protein, that enclose the viral genome and facilitate its delivery into new host cells1. Retroviral CA proteins contain independently-folded N-terminal and C-terminal domains (NTD and CTD) that are connected by a flexible linker2–4. The NTD forms either hexameric or pentameric rings, whereas the CTD forms symmetric homodimers that connect the rings into a hexagonal lattice3,5–13. We previously used a disulfide crosslinking strategy to enable isolation and crystallization of soluble HIV-1 CA hexamers11,14. By the same approach, we have now determined the X-ray structure of the HIV-1 CA pentamer at 2.5 Å resolution. Two mutant CA proteins with engineered disulfides at different positions (P17C/T19C and N21C/A22C) converged onto the same quaternary structure, indicating that the disulfide-crosslinked proteins recapitulate the structure of the native pentamer. Assembly of the quasi-equivalent hexamers and pentamers requires remarkably subtle rearrangements in subunit interactions, and appears to be controlled by an electrostatic switch that favors hexamers over pentamers. This study completes the gallery of sub-structures describing the components of the HIV-1 capsid and enables atomic level modeling of the complete capsid. Rigid-body rotations around two assembly interfaces appear sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.