Abstract

Nitrogen-doped graphene has been increasingly utilized in a variety of energy-related applications, serving as a catalyst or support material for fuel cells, and as an anode material for lithium-ion batteries, among others. The thermal reduction of graphene oxide (GO) in nitrogenous sources to incorporate nitrogen, producing nitrogen-doped reduced graphene oxide (NRGO), is the most favored method. Controlling atomic configurations of nitrogen-doped sites is the key factor for tailoring the physico-chemical properties of NRGO, but major challenges remain in identifying detailed atomic arrangements at nitrogen binding sites on highly defective and chemically functionalized GO surfaces. In this paper, we present atomistic-scale modeling of the nitrogen doping process of GO with different types of vacancy defects. Molecular dynamics simulations using a reactive force field indicate that the edge carbon atoms on defect sites are the dominant initiation location for nitrogen doping. Further, first-principles calculations using density functional theory present energetically favorable chemical transition pathways for nitrogen doping. The significance of this work lies in providing important chemical insights for the effective control of the desired properties of NRGO by suggesting a detailed mechanism of the nitrogen doping process of GO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call