Abstract

Monolayer PtSe2 holds great potential in extending 2D devices functionality, but their atomic-level-defect study is still limited. Here, we investigate the atomic structures of lattice imperfections from point to stretched 1D defects in 1T-PtSe2 monolayers, using annular dark-field scanning transmission electron microscopy (ADF-STEM). We show Se vacancies (VSe) have preferential sites with high beam-induced mobility. Diverse divacancies form with paired VSe. We found stretched linear defects triggered by dynamics of VSe that altered strain fields, distinct from the line vacancies in 2H-phase 2D materials. The paired VSe stability and formation possibility of vacancy lines are evaluated by density functional theory. Lower sputtering energy in PtSe2 than that in MoS2 can cause larger possibility of atomic loss compared to diffusion required for creating VSe lines. This provides atomic insights into the defects in 1T-PtSe2 and shows how a deviated 1D structure is embedded in a 2D system without losing atom lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.