Abstract
Inorganic barriers grown by atomic layer deposition (ALD) can overcome the stability issues originating from the permeation of foreign species (water and oxygen) into polymer thin films. Alternatively, infiltration of ALD species into the bulk of the polymer can be used to modify its characteristic properties. In this study, the feasibility of growing an inorganic barrier with ALD on polystyrene, poly(methyl methacrylate), and poly(ethylene terephthalate glycol) thin films is evaluated. The nucleation and growth of the ALD layer, including the infiltration into the polymer thin film, are monitored in situ using spectroscopic ellipsometry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy for Al2O3-ALD with trimethylaluminum as the Al precursor and H2O as the reactant. The results show that the deposition temperature and the presence and location of functional groups in the polymer chain exert the strongest influence on the infiltration behavior and as such allow us to manipulate (i.e. to prevent or expedite) the infiltration into the polymer thin film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.