Abstract

Transition metal dichalcogenides (TMDs) are extensively researched in the past few years due to their two-dimensional layered structure similar to graphite. This group of materials offers tunable optoelectronic properties depending on the number of layers and therefore have a wide range of applications. Tungsten disulfide (WS2) is one of such TMDs that has been studied relatively less compared to MoS2. Herein, WS x thin films are grown on several types of substrates by atomic layer deposition (ALD) using a new metal-organic precursor [tris(hexyne) tungsten monocarbonyl, W(CO)(CH3CH2C≡CCH2CH3)3] and H2S molecules at a relatively low temperature of 300 °C. The typical self-limiting film growth by varying both, precursor and reactant, is obtained with a relatively high growth per cycle value of ∼0.13 nm. Perfect growth linearity with negligible incubation period is also evident in this ALD process. While the as-grown films are amorphous with considerable S-deficiency, they can be crystallized as h-WS2 film by post-annealing in the H2S atmosphere above 700 °C as observed from x-ray diffractometry analysis. Several other analyses like Raman and x-ray photoelectron spectroscopy, transmission electron microscopy, UV–vis. spectroscopy are performed to find out the physical, optical, and microstructural properties of as-grown and annealed films. The post-annealing in H2S helps to promote the S content in the film significantly as confirmed by the Rutherford backscattering spectrometry. Extremely thin (∼4.5 nm), as-grown WS x films with excellent conformality (∼100% step coverage) are achieved on the dual trench substrate (minimum width: 15 nm, aspect ratio: 6.3). Finally, the thin films of WS x (as-grown and 600/700 °C annealed) on W/Si and carbon cloth substrate are investigated for electrochemical hydrogen evolution reaction (HER). The as-grown WS x shows poor performance towards HER and is attributed to the S-deficiency, amorphous character, and oxygen contamination of the WS x film. Annealing the WS x film at 700 °C results in the formation of a crystalline layered WS2 phase, which significantly improves the HER performance of the electrode. The study reveals the importance of sulfur content and crystallinity on the HER performance of W-based sulfides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call