Abstract

Optically transparent and highly conducting p-type Cu(I) incorporated ZnS (Cu:ZnS) films are deposited by stacking individual layers of CuS and ZnS using atomic layer deposition. The deposition chemistry and growth mechanism are studied by in situ quartz crystal microbalance. Compositional disorder in atomic scale is observed with increasing Cu incorporation in the films that results in systematic decrease in the optical transmittance in the visible spectrum. Again the conductivity also emphatically depends on the volume fraction of phase-segregated conducting covellite phase. An illustrious correlation prevailing the interplay between the optical transparency and the charge transport mechanism is established. The hole transport mechanism that indicates insulator-to-metal transition with increasing Cu incorporation in the composite is explained in terms of an inhomogeneously disordered system. Under optimized conditions, the material having moderately high optical transmission with degenerate carrier conc...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.