Abstract

TaO x films with controlled ratio of Ta4+ and Ta5+ atoms were prepared at different hydrogen concentrations in plasma. As shown by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, the chemical state of Ta4+ corresponds to oxygen vacancies in the TaO x film. Electrophysical studies of the metal–dielectric–metal structures revealed an increase in the leakage current by four orders of magnitude as the hydrogen concentration in the plasma was increased from 7 to 70%, which is due to an increase in the concentration of oxygen vacancies in TaO x . A test structure of a resistive memory cell was made on the basis of the nonstoichiometric TaO x obtained. It withstood more than 106 rewriting cycles. The suggested atomic layer deposition process shows promise for solving one of the main problems of resistive memory: extension of its working life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call