Abstract

Low-temperature processed SnO2 is a promising electron transporting layer in perovskite solar cells (PSCs) due to its optoelectronic advantage. Atomic layer deposition (ALD) is suitable for forming a conformal SnO2 layer on a high-haze substrate. However, oxygen vacancy formed by the conventional ALD process using H2O might have a detrimental effect on the efficiency and stability of PSCs. Here, we report on the photovoltaic performance and stability of PSCs based on the ALD-SnO2 layer with low oxygen vacancies fabricated via H2O2. Compared to the ALD-SnO2 layer formed using H2O vapors, the ALD-SnO2 layer prepared via H2O2 shows better electron extraction due to a reduced oxygen vacancy associated with the highly oxidizing nature of H2O2. As a result, the power conversion efficiency (PCE) is enhanced from 21.42% for H2O to 22.34% for H2O2 mainly due to an enhanced open-circuit voltage. Operational stability is simultaneously improved, where 89.3% of the initial PCE is maintained after 1000 h under an ambient condition for the H2O2-derived ALD SnO2 as compared to the control device maintaining 72.5% of the initial PCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.