Abstract

Since conversion and intercalation reactions during battery charging and discharging may cause substantial volume changes and irreversible structural transformations that severely affect cathode performance, copper metal has been shown to be a reliable substitute for conventional Li-ion hosting cathodes. However, similar to the shuttle effect in Li-S batteries, the main obstacle coupling Li and Cu is the deposition of reduced Cu2+ on the surface of Li during charging. In this study, the diffusion of Cu ions towards the Li foil was suppressed by employing a carbon-coated separator. Moreover, the high-rate capacity of 596 mAh gCu−1 at a current density of 837 mA gCu−1 was achieved by employing 100 nm thick Cu-film fabricated by atomic layer deposition (ALD), owing to its high surface area, which facilitated rapid redox reactions. With metallic Sb anode, a Cu-Sb full cell exhibits a reversible discharge capacity of 117 mAh gCu−1 (12.3 µAh cm−2) at a relativity high current density of 837 mA gCu−1. Constructing Cu thin films via ALD might open up new opportunities for replacing traditional Li ion-hosting cathodes in Li-ion microbatteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.