Abstract

We investigated atomic layer deposition (ALD) of B2O3 and SiO2 thin films using trimethylborate (TMB) and bis-(diethylamino)silane (SAM-24) precursors, focusing on growth characteristics and film properties. For both cases, ALD processes using O3 and O2 plasma as reactants exhibited well-defined growth saturation and linear growth behavior without any incubation cycles, and produced highly pure, stoichiometric films. In the case of B2O3 films, however, SiO2 layer passivation is required onto the B2O3 due to a spontaneous decomposition caused by moisture in air. On the basis of electrical characterization, the detailed dielectric properties of SiO2 and B2O3/passivation SiO2 films were extensively discussed including the k-value, flat band voltage, and leakage currents. Then, boron-doped SiO2 films with different B/(B + Si) compositions were prepared by controlling B2O3 and SiO2 growth cycles, followed by drive-in annealing and a subsequent wet removal process. Based on both theoretical estimation and SIMS depth profile results, we demonstrated that the surface doping concentration is effectively modulated with controllable B doping contents in the B-doped SiO2 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.