Abstract

Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm2. The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm2, the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.

Highlights

  • The severity of environmental impacts due to energy generation and consumption increases the demand for improved clean and efficient energy production

  • Trimethyl aluminum and tetrakis hafnium were abbreviated as trimethyl aluminum (TMA) and TEMAH, respectively

  • The anti-reflector deposited using pure organic precursor had a larger absorption value than anti-reflector deposited in combination with the inorganic/organic precursors. These absorption results show that precursor type has a large affect on the absorption of the thin film

Read more

Summary

Introduction

The severity of environmental impacts due to energy generation and consumption increases the demand for improved clean and efficient energy production. Within the ICF system, massive optical components, such as mirrors and polarizers, are used to control the properties and directions of laser system beams responsible for the implosion process. These components must be fabricated both with high uniformity and a high laserinduced damage threshold (LIDT) over an aperture diameter greater than several tens of centimeters. Due to the need for good environmental stability, optical coatings for such large and high-power laser systems are produced by electron beam evaporation [2] This method is limited by the difficulty of depositing uniform and precise coatings over a large aperture

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.