Abstract

Epitaxial lift-off techniques, which aim to separate ultrathin single-crystalline epitaxial layers off of the substrate, are becoming increasingly important due to the need of lightweight and flexible devices for heterogeneously integrated ultracompact semiconductor platforms and bioelectronics. Remote epitaxy is a relatively newly discovered epitaxial lift-off technique that allows substrate-seeded epitaxial growth of ultrathin films through few layers of graphene. This universal epitaxial lift-off technique allows freestanding single-crystal membrane fabrication very quickly at low cost. However, the conventional method of remote epitaxy requires transfer of graphene grown on another substrate to the target single-crystalline substrate, which results in organic and metallic residues as well as macroscopic defects such as cracks and wrinkles, significantly reducing the yield of remote epitaxy. Here, we show that direct growth of thick graphene on the target single-crystalline substrate (SrTiO3 for this study) followed by atomic layer etching (ALE) of the graphene layers create a defect- and residue-free graphene surface for high yield remote epitaxy. We find that the ALE efficiently removes one atomic layer of graphene per cycle, while also clearing multi-dots (clumps of carbon atoms) that form during nucleation of the graphene layers. Our results show that direct-grown graphene on the desired substrate accompanied by ALE might potentially be an ideal pathway toward commercialization of remote epitaxy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.