Abstract
Chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) was investigated experimentally. In the two-step reaction mechanism, molecular fluorine reacts with nitrogen oxide and formed fluorine atoms react then with hydrogen iodide to iodine atoms. The efficiency of this process was studied in dependence on mixing conditions, flow rate of reacting gases and pressure in reactor. A maximum concentration of atomic iodine was obtained at approximately equimolar ratio of reacting gases (F2, NO and HI), which agrees well with the stoichiometry of production reactions. A shortage of any reacting gases limits the rate of atomic iodine formation. An excess of F2 relative to NO at a simultaneous deficiency of HI had a most detrimental effect on atomic iodine production. High concentrations of atomic iodine (5-8 × 1015 cm-3) were achieved by this method at pressures 4-9 kPa, which are sufficient for a COIL operation. This makes it possible to use the above method as a source of iodine atoms and their injection into the primary flow of singlet oxygen in COIL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Collection of Czechoslovak Chemical Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.