Abstract

Pyrochlore oxides (A2B2O7) are potential nuclear waste substrate materials due to their superior radiation resistance properties. We performed molecular dynamics simulations to study the structural properties and displacement cascades in ytterbium titanate pyrochlore (Yb2Ti2O7) and high-entropy alloys (HEPy), e.g., YbYTiZrO7, YbGdTiZrO7, and Yb0.5Y0.5Eu0.5Gd0.5TiZrO7. We computed lattice constants (LC) (ao) and threshold displacement energy (Ed). Furthermore, the calculation for ao and ionic radius (rionic) were performed by substituting a combination of cations at the A and B sites of the original pyrochlore structure. Our simulation results have demonstrated that the lattice constant is proportional to the ionic radius, i.e., ao α rionic. Moreover, the effect of displacement cascades of recoils of energies 1 keV, 2 keV, 5 keV, and 10 keV in different crystallographic directions ([100], [110], [111]) was studied. The number of defects is found to be proportional to the energy of incident primary knock-on atoms (PKA). Additionally, the Ed of pyrochlore exhibits anisotropy. We also observed that HEPy has a larger Ed as compared with Yb2Ti2O7. This establishes that Yb2Ti2O7 has characteristics of lower radiation damage resistance than HEPy. Our displacement cascade simulation result proposes that HEPy alloys have more tendency for trapping defects. This work will provide atomic insights into developing substrate materials for nuclear waste applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.