Abstract

Nanoimprinting by thermoplastic forming has attracted significant attention due to its promise of low-cost fabrication of functionalized surfaces and nanostructured devices, and metallic glasses have been identified as a material class ideally suited for nanoimprinting. In particular, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material’s ability to replicate a mould. Here we demonstrate atomic-scale imprinting into a platinum-based metallic glass alloy under ambient conditions using atomic step edges of a strontium titanate single crystal as a mould. The moulded metallic glass replicates the ‘atomic smoothness’ of the strontium titanate, with identical roughness to the one measured on the mould even after multiple usages and with replicas exhibiting an exceptional long-term stability of years. By providing a practical, reusable, and potentially high-throughput approach for atomic imprinting, our findings may open novel applications in surface functionalization through topographical structuring.

Highlights

  • Nanoimprinting by thermoplastic forming has attracted significant attention due to its promise of low-cost fabrication of functionalized surfaces and nanostructured devices, and metallic glasses have been identified as a material class ideally suited for nanoimprinting

  • With details of the imprinting method provided in the methods section below, the general procedure is as follows: first, the top plate as well as the bottom plate with the freshly prepared strontium titanate (STO) crystal placed onto it are heated at 270 °C, which was found to be the temperature Pt-bulk metallic glasses (BMGs) possesses the perfect viscosity for accurate flow

  • A BMG ingot is placed on the substrate and given time to equilibrate before the force is slowly ramped up to ≈1 kN

Read more

Summary

Introduction

Nanoimprinting by thermoplastic forming has attracted significant attention due to its promise of low-cost fabrication of functionalized surfaces and nanostructured devices, and metallic glasses have been identified as a material class ideally suited for nanoimprinting. Their featureless atomic structure suggests that there may not be an intrinsic size limit to the material’s ability to replicate a mould. As the moulding process is similar to other highly scalable and practical nanomoulding methods but yields feature sizes dramatically smaller than these, we expect rapid proliferation of this finding and method (i) to study structure and deformation of glasses and (ii) for technological applications similar to those currently occupied by nanoimprinting, such as higher data density[1], larger surface areas in catalysts[5,10,11], or the precise shaping of surface morphologies for surface functionalization[4,5,6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.