Abstract

ABSTRACTBased on extensive first-principles total-energy calculations we study the electronic structure, atomic geometry and energetics of atomic hydrogen in cubic GaN. All charge states of hydrogen (H+, H0, H-) are examined. For H- the gallium tetrahedral interstitial site is energetically most stable. All other sites are much higher in energy, indicating a high diffusion barrier for H- in GaN. H+ favors positions on a sphere with a radius of ≈ 1 Å and a nitrogen atom in the center. Among these positions the nitrogen antibonding site is energetically most stable. An unexpectedly large negative-U effect (U = —2.5eV) indicates that H0 is unstable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.