Abstract
We calculate the coupled hydrostatic and ionization structures of pressure-supported gas clouds that are confined by gravitationally dominant dark-matter (DM) mini-halos and by an external bounding pressure provided by a hot medium. We focus on clouds that are photoionized and heated by the present-day background metagalactic field and determine the conditions for the formation of warm (WNM), and multi-phased (CNM/WNM) neutral atomic hydrogen (HI) cores in the DM-dominated clouds. We consider LCDM dark-matter halos, and we compute models for a wide range of halo masses, total cloud gas masses, and external bounding pressures. We present models for the pressure-supported HI structures observed in the Local Group dwarf galaxies Leo A and Sag DIG. We then construct minihalo models for the multi-phased (and low-metallicity) compact high-velocity HI clouds (CHVCs). If the CHVCs are drawn from the same family of halos that successfully reproduce the dwarf galaxy observations, then the CHVCs must be "circumgalactic objects" with characteristic distances of 150 kpc. For such systems we find that multi-phased behavior occurs for peak WNM HI column densities between 2e19 and 1e20 cm^-2, consistent with observations. If the large population of CHVCs represent "missing low-mass satellites" of the Galaxy, then these clouds must be pressure-confined to keep the gas neutral. For an implied CHVC minihalo scale velocity of v_s=12 km s^-1, the confining pressure must exceed ~50 cm^-3 K. A hot (2e6 K) Galactic corona could provide the required pressure at 150 kpc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.