Abstract
Mo2C nanocrystals (NCs) anchored on vertically aligned graphene nanoribbons (VA-GNR) as hybrid nanoelectrocatalysts (Mo2C-GNR) are synthesized through the direct carbonization of metallic Mo with atomic H treatment. The growth mechanism of Mo2C NCs with atomic H treatment is discussed. The Mo2C-GNR hybrid exhibits highly active and durable electrocatalytic performance for the hydrogen-evolution reaction (HER) and oxygen-reduction reaction (ORR). For HER, in an acidic solution the Mo2C-GNR has an onset potential of 39 mV and a Tafel slope of 65 mV dec-1, and in a basic solution Mo2C-GNR has an onset potential of 53 mV, and Tafel slope of 54 mV dec-1. It is stable in both acidic and basic media. Mo2C-GNR is a high-activity ORR catalyst with a high peak current density of 2.01 mA cm-2, an onset potential of 0.93 V that is more positive vs reversible hydrogen electrode (RHE), a high electron transfer number n (∼3.90), and long-term stability.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.